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Department of Physics, University College Cardiff, PO Box 78, Cardiff, UK 
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Abstract. The simplest Migdal-Kadanoff approximation is optimised on hypercubic lat- 
tices. Generalisation is made to all regular lattices leading to recursion relations continuous 
in lattice coordination. One variety of these relations shows universality whilst another 
variety shows duality on planar lattices. The king model in external fields, both normal 
and staggered, is investigated. Phase diagrams and exponents are found under a complete 
treatment of the ambiguity in the handling of external fields by bond-moving. Finally the 
underlying exactly solved family of hierarchical lattices is considered. It is shown that 
these lattices exhibit a complete breakdown in the concept of universality. 

1. Introduction 

The simple renormalisation approximations due to Migdal(l975) and Kadanoff (1976) 
have received much attention and application in the literature. Many authors have 
sought to improve the basic scheme (Emery and Swendsen 1977, Nicolll979, Maritan 
1980, Martinelli and Parisi 1981, Lipowsky 1982). Many models of contemporary 
interest have been explored with the approximations (JosC et a1 1977, Domany and 
Riedel 1979, Andelman and Berker 1981, and many others). It has been recognised 
(Berker and Ostlund 1979) that recursion relations found on regular lattices under 
the approximations constitute exact solutions on types of fractal lattice termed 
hierarchical lattices by Kaufman and Griffiths (1981). 

The essential approximation within the schemes is the distortion of lattices, at 
each renormalisation step, by moving bonds such that tractable decimations may be 
carried out. In the simplest schemes (Migdal 1975, Kadanoff 1976, Emery and 
Swendsen 1977), the distorted lattice is an isomorphic superlattice with strings of 
spins decorating its edges (see figure 2). Decimating the strings on the decorations 
leads to recursion relations for the nearest neighbour couplings. This paper is con- 
cerned with these simple string-based schemes. Section 2 describes the orginal versions 
of the approximations and discusses the well known features. Section 3 shows how 
the bond-moving approximation can be interpreted in a liberal fashion which allows 
free parameters to be introduced and an optimal approximation to be found on the 
hypercubic lattices. In 8 4 recursion relations applicable to all regular lattices are 
found. These relations are continuous in both dimension and lattice coordination. 
One variety shows universality in exponents whilst another shows duality on planar 
lattices. The approximations are well known to be ambiguous in their treatment of 
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1042 J R Melrose 

external fields. In § 5 this ambiguity is examined for the case of external fields on the 
Ising model. Understanding the recursion relations as exact solutions to hierarchical 
lattices is essential and 9: 6 contains comments and results on this. Throughout the 
work results on the king model are used to discuss and establish points. 

2. The original approximations 

Firstly some notation is introduced. Instead of bonds, a de( rated lattice (Syozi 1972) 
is one which has more complicated structures, decorations: between the vertices. A 
general such decoration is M strings of length A with B multiple bonds between each 
pair of vertices. Figure 1 illustrates this. (A further generalisation, considered below, 
consists of decorations with strings having varying B and M factors.) 

Figure 1. A general decoration, M strings of length 
A with B bonds per coupling. Lattice sites are 
shown as open circles. 

Kadanoff (1975) introduced the bond-moving approximation. If bonds are moved 
between equivalent sites on a lattice then the free energy on the distorted lattice is a 
lower bound to that of the original lattice. Using this Kadanoff (1976) was able to 
derive recursion relations which involved that found earlier by Migdal (1975) and 
that found later, using another bond-moving construction, by Emery and Swendsen 
(1977, to be referred t&as ES). In all these approximations a decorated isomorphic 
superlattice, of lattice spacing b times the original spacing, is formed. The decorations 
constructed by each are 

Figure 2 illustrates on the square lattice the Migdal and ES constructions for b = 2. 
The coefficients in ( l a )  and ( l b )  are applicable to hypercubic lattices, whereas the 
ES construction may be carried out on any regular lattice by simply choosing a supercell 
and moving all interior bonds onto the edge strings. The Kadanoff construction 
introduces anisotropic couplings and the ith coefficients hold for the ith lattice 
direction. However, recursion relations for each direction are independent of couplings 
in other directions. This leads to a pathological treatment of the anisotropic model. 
The pathologies are both global, as noted by Kadanoff (1976), and local around 
the fixed point (the fixed point is isolated with d equal and relevant scalingeigenvalues). 
The ES construction, though applicable to all regular lattices, depends only on their 
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Figure 2. The b = 2 Migdal (broken lines) 
(full lines) decorated superlattices on the 
lattice. 

and ES 
square 

dimension: a universality expected for critical exponents but not critical couplings or 
thermodynamic functions. 

As noted by Kadanoff (1976) the constructions do possess duality features shown 
by planar lattices. In particular a planar lattice with ES type decorations is dual to 
one with Migdal type decorations. Figure 3 shows the necessary construction for the 
case b = 2 on the square lattice. It is required that each vertex of one lattice is 
surrounded by an elementary cycle on the other and vice versa. In general, lattices 

Figure 3. The duality relationship between the Mig- 
dal (broken lines) and ES (full curves) decorations 
(case d = 2 and b = 2). 

with decorations ( A  = A ,  B = B, M = 1) are dual to dual lattices with decorations 
( A ’ = B ,  B’= 1, M ’ = A ) .  Fixed points for dual relations are related by duality 
transformations. 

The merits and drawbacks of the approximations are well known (Kadanoff 1976). 
On the merit side are: the continuity of recursion relations in dimension and the ease 
with which many models may be examined; the availability of differential transforma- 
tions; the duality properties outlined above; a presumed exactness to first order in E ,  
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where d = dlcd + E (dlcd = lower critical dimensionality) (Migdal 1975). Against this 
are weighed: poor thermal eigenvalues; negative specific heat exponents for all d ;  the 
dependence of results on 6 ;  a worsening of results with increasing dimension and 
incorrect high-dimensional limits of exponents. Furthermore, cases of incorrect 
phase diagrams, not only at high dimension but also in planar systems, have been 
noted (see, for example, the anomalies discussed by Andelman and Berker (1981), 
Kaufman et a1 (1981) and Domany and Riedel (1979)). 

The approximations are of a decimation transformation which is not expected to 
be a proper renormalisation (Wilson and Bell 1974, Sneddon and Barber i977). 
Improvement schemes, although successful in giving better exponents, should bear 
this in mind. However, it is clear that including further neighbour and multiple spin 
couplings directly under bond-moving constructions (Lipowsky 1982) or within per- 
turbation schemes (Martinelli and Parisi 1981) does lead to better estimates of 
exponents. 

3. Generalised bond-moving and optimal approximation on hypercubics 

The bond-moving approximation can be interpreted in a more liberal fashion than 
hitherto in the literature. Following the usual prescription (Kadanoff 1976) bond- 
moves are specified by the addition of a perturbation V to the Hamiltonian H. The 
bond-move condition is ( V ) ,  = 0, which guarantees that free energy estimates are 
bounded from below, and is satisfied if bonds are moved between equivalent sites. 
Consider m successive bond-moves, V = V I  + . . . + Vi +. . . + V,. At the ith move 
one may specify that either 

or just 

Under (2a)  the ith moved bonds may only be moved between sites equivalent on the 
(i - 1)th distorted lattice, However, under (26) sites need only be equivalent on the 
original lattice. The free energy bound is maintained on the full bond-move under 
both (2a)  and (26), yet (26) is a much weaker condition on possible moves than (2a) ;  
furthermore, there is no reason why (26) should lead to worse estimates. (Restricting 
moves to condition (2a) leads to the necessity of anisotropic decorations under 
Kadanoff’s construction.) 

Using the weaker condition it is possible to make a wide variety of decorated 
superlattices. An example on the square lattice is shown in figure 4. It is clear that 
on the hypercubics all such decorations must be formed with strings of length A = 6. 
The variation available is in the B and M factors. Rather than bother about explicit 
construction, consider r types of string specified by r sets of coefficients Bi, Mi. 
One may choose to leave some spins disconnected as in the ES construction or 
even to leave disconnected finite segments of lattice as in the examples discussed by 
Swendson and Zia (1979). The failure of the latter scheme is noted and in this 
paper all spins and bonds are included in the decorated superlattice. On hypercubic 
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( 1 )  i l l )  i l l l l  

Figure 4. Bond-moving construction involving a free parameter p on the square lattice 
with 6 = 2. From (i)  to (ii) two bonds in each supercell are moved to form the broken 
couplings with B = p bonds and full couplings with B = ( 4 - p ) / 2  bonds. From (ii) to (iii) 
the strings with broken couplings are moved onto the cell edges to leave them with M = 
strings with B = p ,  arid M = 1 strings with B = ( 4  - p ) / 2 .  Note that the move from (ii) to 
(iii) is of the type (26) discussed in the text. 

lattices this conservation of spins and bonds leads to the following constraints on the 
coefficients of the decorations: 

conserving spins: ( A  - 1)  1 Mi = (bd - l ) / d  (3a 1 
I 

conserving bonds: A 1 MiBi = bd.  
I 

As stated earlier A = b and the decorated superlattice is taken to be isotropic. 
Assuming that the free energy bound is obeyed by all constructions, the Mi and Bi 
may be treated as variational parameters (under (3a )  and (36)) and chosen by 
optimising the free energy estimate. This is carried out in appendix 1 and the rather 
obvious result is that the optimal decoration is the homogeneous one, all strings being 
the same. From (3a) and ( 3 b )  one finds this to be 

A = b  B = d ( b d - b d - ' ) / ( b d - l )  M = (bd  - l ) / [ d ( b  - l ) ] .  (4) 

The conditions ( 3 a )  and ( 3 b )  imply that free energy estimates are exact at high and 
low temperatures. As discussed in appendix 1, on these simple string-based approxi- 
mations optimising the free energy estimate corresponds to optimisation of the thermal 
exponents (which should be contrasted with more sophisticated approximations such 
as those of Lipowsky (1982) and Kadanoff et a1 (1976)) .  

The author has examined the coefficients ( 4 )  on the Ising model 

- PH = 1 JSiSj (Si = i l )  
i j  

where P = 1 / k B T ,  kB is the Boltzmann constant and T the temperature. Recursion 
relations found for the general case of coefficients ABM are 

tanh(J ' /M) = tanhA(BJ) ( 5 )  

and 

K = ln[22A-2(~osh2A(BJ) -sinh2^(BJ))] ( 6 )  
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where J' is the renormalised coupling and K is the free energy contribution per edge 
of the new lattice. The usual analysis is pursued (Niemeyer and van Leeuwen 1973) 
and the coefficients (4) are compared with ( la) ,  ( l b )  and (IC). Figures 5 and 6 
respectively show the dependence on b of the single unstable fixed point, J*, and the 

I I I I 
2 4 6 0 

b 

Figure 5. The unstable fixed point J *  against b for the case d = 2 .  The Migdal ( lb) ,  ES 
(IC) and optimal (4) coefficients are compared. 

0 7  h . .  

1 ! 1 I i 

4 8 12 16 20 
b 

Figure 6. The thermal scaling dimension Yr against b for d = 2, 3 and 4.  As b + 1, 
YT = 0.7536, 0.9482 and 0.9899, respectively. 

thermal scaling dimension, YT, defined at J*. The estimate for J* given by (4) is 
superior to that of ( I b )  and (IC) in the case shown (the square lattice). However, all 
coefficients give the same YT curves. As indicated by the graphs, all coefficients lead 
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0.8 

0.9- 

to the same results and differential transformation as b -* 1. Free energy estimates 
may be computed using (6) (Nauenberg and Nienhuis 1974). Figure 7 compares the 
exact solution on the square lattice (Onsager 1944) and the estimates from (4), (la), 

- 
r-+ I I I I I I 

- 

- 

- Figure 7. Free energy estimates on the square lattice 
for the case b = 2. A, exact result (Onsager 1944); '\ 1 B. oDtimal coefficients (4): C, Kadanoff ( i n ) :  D. ES I 1  I 1 1 

\ 

0 ? 5  0 4 0  0 4 5  0 5 0  OS5 (IC); E, Migdal ( l b ) .  
J 

(16) and (IC).  The case 6 = 2 is shown for a region around the critical coupling. The 
optimisation of (4) is evident and shown over the full coupling range. Estimates are 
poorest in the critical region. 

4. Generalisation to all regular lattices 

Under the weaker bond-moving condition (26) constructions may be carried out on 
any regular lattice. An example on the triangular lattice is shown in figure 8. On 
most lattices strings of length A = b need to be formed; however, on the hexagonal 
lattice, for example, strings of length A = b4'3 are necessary. Rather than bond-moving 
a more ad hoc but instructive route to generalisation is undertaken. Following the 
results of the last section, homogeneous, isotropic decorations are assumed. On a 
regular lattice of dimension d and coordination. z the conditions ( 3 a )  and (36) 
generalise to 

M ( A  - 1) = ( 2 / z ) ( b d  - 1) 

MBA = b d .  

The coefficient A will be left free and generalisation sought by examining the depen- 
dence on A of Ising model results. 
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/ I  I / I O  ( 1 1 1 1  

Figure 8. Construction on the triangular lattice with 6 = 3. From (i )  to (ii) strings with 
B = $ are formed. From (i i )  to (iii) each supercell edge is given M = $ of these strings. 

The differential transformation is examined initially. It is convenient to set A = 6". 

dJ'/dS = J d [ l -  ( ~ / d ) ] + ( 2 d / ~ ) X ( ~ a J / 2 d )  (8) 

where X ( x )  = tanh x ln(tanh x ) / ( l -  tanh' x). Furthermore, YT is found as S + 0 to 
be given by 

Letting b = exp(S), expanding ( 5 )  in S and applying ( 7 a )  and ( 7 b )  leads to 

YT = d [ l  + (Zu/d)X(zaJ*/2d)/tanh(zaJ*/d)]. (9) 

For 0 < ( a / d )  < 1, a single unstable fixed point is found. Figures 9 and 10 respectively 
show the variation of J*  and ( Y * / d )  with (aid) and z .  The ( Y T / ~ )  curve is universal 
(independent) with respect to z .  

old  old 

Figure 9. The unstable fixed point of (8), J * ,  against 
a / d  with z = 3, 4 and 6.  For a / d  < O  and a / d  > 1 
no unstable fixed point exists. As a l d  + 0, J* + 0; 
a s a l d - 1 ,  J * + l / z ( l - a / d ) .  

Figure 10. YT/d against a / d  for (8) and (9). The 
curve has a maximum at a / d  = 0.5 of Y T / d  = 0.3768 
and is independent (universal) of z .  

The coefficients ( la ) ,  ( l b ) ,  (IC) and (4) all have a common differential transfor- 

(10)  

mation 

dJ'/dS = J ( d  - 1 )  + X ( J ) .  
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Now a is chosen such that (8) reduces to (10) on the square lattice; the following are 
appropriate 

6) a = 2 d l z  (A  = bZd”)  

(ii) a = d / 2  (A = bd”) (11) 

(iii) a = l  (A = 6 ) .  

For (i) and (iii) (8) reduces to (10) on the hypercubics (2d = 2). As mentioned earlier, 
on most lattices bond-moving constructions lead to A = b which is choice (iii) above. 
In table 1 results for each choice are compared with each other and the known results. 

Referring to table 1, for (i) and (ii) J* depends only on z. Only (iii) shows a 
dependence of J *  on d and z which is qualitatively correct. Universality in YT is 
shown by (ii) and (iii) but not by (i). Choice (ii) gives a maximal YT for all d. Coefficients 

Table 1. Comparison of results from generalisations with known results: d = 2, exact 
(Onsager 19441, d = 3, critical couplings (Domb 1974) and exponent (Le Guillou and 
Zinn Justin 1980, see also Roskies 1981) and d = 4, critical coupling (Fisher and Gaunt 
1964) and mean field exponent. 

(iii) a = 1 Known ti )  a = 2djz ( i i j  a = d/2 

Lattice (d, z )  J *  YT J *  YT J *  YT J *  YT 

Hexagonal 
Square 
Triangular 
Diamond 
Cubic 
BCC 
FCC 

Hypercubic 

0.6584 
0.4407 
0.2746 
0.3698 
0.1021 
0.1574 
0.1021 
0.1498 

1 0.9871 
1 0.4407 
1 0.1398 
1.587 0.4407 
1.587 0.1398 
1.587 0.0501 
1.587 0.0067 
2 0.0501 

0.6321 
0.7536 
0.6321 
1.1304 
0.9482 
0.7425 
0.4998 
0.9899 

0.5876 
0.4407 
0.2938 
0.4407 
0.2938 
0.2203 
0.1469 
0.2203 

0.7536 
0.7536 
0.7536 
1.1304 
1.1304 
1.1304 
1.1304 
1.5072 

0.5876 
0.4407 
0.2938 
0.2906 
0.1398 
0.1048 
0.0699 
0.0501 

0.7536 
0.7536 
0.7536 
0.9482 
0.9482 
0.9482 
0.9482 
0.9899 

for general b can be found from (i), (ii) and (iii) with (7a)  and (7b). For all three 
choices J *  increases and YT decreases with increasing b. For (ii) and (iii) values of 
YT remain universal for all z .  Varying A reveals that YT is a maximum for (ii), 
A = bd’*, for all 6 .  As d + 1 the approximation should become exact; this is not shown 
by (ii). It is noted that (i) is found on the hexagonal lattice by bond-moving (as 
mentioned earlier) and hence that bond-moving breaks universality. 

The preference of the author is to consider (iii) as the natural extension of (10) 
and (4) to the regular lattices. However, a well known feature of (10) is that it shows 
the self-duality of the square lattice. The choice (iii) does not extend this feature 
whereas the choice (i) does. 

To discuss the duality of (i) some notation is introduced. Decimation of the string 
decorations can best be carried out by using transfer matrices. Assuming discrete 
spin models, denote their coupling by a matrix I and define the transfer matrix T via 
Ti, = exp(I,,). Extending a notation due to Nicoll (1979) the transformation for the 
general decoration of figure 1 is written 
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where K is a constant and on the right-hand side the elements of T are raised to the 
power B, T is raised to the power A and then the ijth element of the resultant is 
raised to the power M (multiple bonds and strings combine by direct product). Now 
setting the coefficients via (i), ( 7 a )  and ( 7 b )  and expanding as before one finds 

dTij/d8 = d ( 1 -  2 / z ) T i j  In(Tj) + ( 2 d / z ) [ T  1n(T)lij (13) 

where multiplicative constants are omitted above and below. Wu and Wang (1976) 
formulated the duality transform on planar lattices for the general family of models 
possessing cyclic transfer matrices. Under this transform the elements of the dual 
transfer matrix are the eigenvalues of the original matrix and vice versa. Denoting 
the distinct elements of T by fk, the eigenvalues (of which there are the same number 
as the t ' s )  by rl and the j th  element of the lth eigenvector by f i r ,  equation (13)  may 
be written 

Now using 

one finds 

Equations (14)  and (16)  are respectively the transformation of the original model on 
the original lattice and that of the dual model on the dual lattice. From these it is 
seen that the coordinations of original lattice and dual lattice are related by z ' =  
2( 1 - 2/2) - ' ,  which is the correct topological relationship between planar dual lattices. 

5. Treatment of the Ising model with external fields 

As pointed out by Jose e? a1 (1977), the treatment of external fields under bond-moving 
distortions is ambiguous. Any Hamiltonian can be trivially rearranged such that fields 
may be written as site terms or as part of the bonds. Such rearrangements do not 
commute with subsequent bond-moving. Results found from recursion relations differ 
both qualitatively and quantitatively between different arrangements. 

The Ising model is considered with both an external field h conjugate to the 
ferromagnetic order parameter and a staggered field f conjugate to the antiferromag- 
netic order parameter. A parameter q is introduced and a fraction q of each site's 
field is included with its bonds. The Ising Hamiltonian is written 
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where two sublatttices are assumed andj l  andj2 respectively denote spins on sublattice 
(1) and sublattice (2). The first line consists of the site terms and the second line 
consists of the bond terms which are moved. 

JosC et a1 (1977) in their investigation of the planar model used q = 1 for symmetry- 
breaking fields. They made this choice on the basis of the agreement of results with 
those from a spin-wave theory. Emery and Swendson (1977) suggested that q = 0 
was appropriate for crystal fields. They suggested that using q other than zero leads 
to an incorrect treatment of external fields. However, decimation is not expected to 
be a proper renormalisation transformation (Wilson and Bell 1974) and other schemes 
such as majority rule block-spins (Niemeyer and van Leeuwen 1973) do not show 
fixed fields at zero coupling (as may easily be shown). Phase diagrams differ between 
q = 1 and q = 0. For the spin-one model, differences have been reported by Kaufman 
et a1 (1981) and ES. In this paper differences in the treatment of the king model will 
be reported. (It should be noted that results in this section are given in the context 
of approximation on regular lattices. The situation of external fields in the context 
of the exactly solved hierarchical lattices is discussed in 0 6 . )  

A constraint exists on the scaling of fields conjugate to the order parameter 
(symmetry-breaking fields) at the high-coupling (discontinuity) fixed points. Nienhuis 
and Nauenberg (1975) argued that eigenvalues of these fields A h  should satisfy A h  = b d  
at such points. From (17) and the results given in appendix 2, after some algebra one 
finds 

1 - tanhA(BJ) 
1 + tanhA(BJ) =q(MB eXp(2BJ) 

The ferromagnetic discontinuity fixed point is found in the limit J + a .  From (18) 
one finds 

A h  =(l-q)[l+izM(A-l)]+qMBA. (19) 

On substitution of the conservation conditions (7a) and (76), (19) gives the correct 
scaling eigenvalue independent of q. 

In appendix 2 general recursion relations for the Hamiltonian (17) are found. The 
coefficients specified by (iii) are used (A = 6, M = ( 2 / z ) ( b d  - 1)/(6 - l), B = ( b d - ' / M ) )  
in actual calculation. For the case b = 3 the relations are 

J' = & ln(gm/g3g4) (20) 

h ' = ( l - q ) ( l  -$zM)h +h'Wln(gl/g2) (21) 

f= (1 -q ) ( l  - I z ~ ) f + i z ~  1n(g3/g4) (22) 

where 
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and 

r = exp(BJ) 

Each parameter (J, h, f )  and each pair of parameters forms an invariant subspace 
under the relations. In addition the following symmetries are evident: (J, h , f ) +  
( - J , f ,  h )  and changing the sign of the fields. To find some of these symmetries it is 
necessary to preserve both sublattices by choosing an odd-integer scale change. 
However, it is useful to continue the relations for arbitrary b such that all the 
symmetries above are also continued. In appendix 2 a few tricks are employed to 
this end. It is noted that the symmetries of the relations are found for all z ; therefore 
the approximation does not exhibit the absence of antiferromagnetic transitions in 
zero field on some close-packed lattices such as the triangular lattice. Restriction to 
open lattices has already been implicit in the assumption above of two sublattices. 
(The field f cannot be defined on the close-packed lattices.) 

Other authors have reported results for the antiferromagnetic region (-J, h, 0) 
using a differential Migdal-Kadanoff approximation (continuation being made as 
described in appendix 2). Nagai and Toyonaga (1981) used q = 0 whereas Coniglio 
et a1 (1981) used q = 1. Both these works report a critical surface in agreement with 
other (non-renormalisation) studies (Binder and Landau 1980, Muller-Hartmann and 
Zittartz 1977). However, the renormalisation flows and fixed-point structures differ 
between q = 0 and q = 1. As described above the (-J, h, 0) subspace, flows, fixed 
points and exponents can all be mapped directly onto the ( J ,  0 , f )  subspace. Hence, 
for example, the result (19) for the h field at the ferromagnetic discontinuity point 
implies directly the same result for the f field at the antiferromagnetic discontinuity 
point. These subspaces contain all the fixed points and are discussed below in a joint 
fashion. 

Figure 11 shows the flow found from (20), (21) and (22) in the case q = 1, d = 2 
and t = 4. The critical fixed point on the X axis (labelled C1 j is unstable with respect 
to a second fixed point (labelled C2) on the critical surface. Coniglio et a1 (1981) also 
found this second fixed point. As will be reported below exponents at C2 differ from 
those at C1 which indicates a breakdown in universality between transitions with field 
(C2) and without field (Cl) .  This breakdown is not expected of the exact model. The 
appearance of such ‘satellite’ fixed points as C2 has been noticed with Migdal-Kadanoff 
approximations to other models (Kaufman et a1 1981). For q < 1 the relations develop 
a serious pathology. For each q < 1 there exist regions within which the relations 
exchange the sign of the fields. Figure 12 shows these regions. For q < 1 a critical 
surface exists in the ‘good’ region of the space. As q is decreased C2 moves rapidly 
towards C1, merging with C1 (in this case b = 3 and d = 2) at q = 0.944 at which the 
scale dimension along the surface C1/C2 is marginal. Figure 12 also shows the critical 
surface and flow for q = 0.94; the universality breakdown described earlier in the case 
q = 1 has been lost. As J + m  the critical surface for q = 1 is h,= ZJ,, the correct 
result; for q < 1 the correct limit is only found as b + 1. Continuing the relations for 
arbitrary b as described in appendix 2 reveals that the pathological regions shrink 
and vanish in the limit b + 1 and the differential transformation is assumed to show 
no such pathologies for all q. The qualitative form of the flows in figures 11 and 12 
is found respectively for q = 1 and 0 as b + 1. The q = 1 result presented by Coniglio 
et a1 (1981) is recovered; however, the q = 0 result presented by Nagai and Toyonaga 
(1981) is not found. Their result has the point C1 unstable with respect to the critical 
surface whereas this author finds (as in figure 12) that C1 is stable. This topology of 

s =exp[(l  -q +2Bq/z)h]  w = exp[(l -q +2Bq/z)f]. 
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Y 

X 

Figure 11. Flow in the ( -J ,  h, 0 )  and ( J ,  0, f) subspaces in the case 6 = 3, q = 1, d = 2 and 
z = 4. The axes are X = l/iJI and Y = h / l J /  for J < O  and Y =f/lJi for J > O .  Fixed points 
are at C2, X = 1.7249 and Y = 1.4854, and C1, X = 2.0781 and Y = 0. 

X 

Figure 12. Pathological regions in the case b = 3, d = 2 and z = 4, and q = 0.8, 0.6 and 
0.4. In  the region bounded to the left of these lines, h'<O if h > O  and vice versa. Also 
shown is the critical surface in the case q = 0.94. X and Y are defined as in figure 11. 
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a single fixed point on the J axis, stable with respect to the critical surface, is that 
expected for the model. For d > 1.9031 the qualitative nature of the picture described 
above does not alter. At d = 1.9031 and q = 1 C2 merges with C1 and only C1 exists 
for all q and d < 1.9031. As d + 1 the transformation is exact, independent of q, and 
all critical surfaces are shrunk to the high-coupling fixed point. Table 2 gives the 
positions of fixed points for the case z = 2d and b = 1.1. 

Table 2. Fixed points C1 (q = 1 and 0, z =4)  and C2 (q = 1 and z = 4) and scaling 
dimensions ( b  = 1.1). X = 1/lJl and Y = h/lJI for J < O  and Y = f / l J I  for J > O .  

Fixed 
point C2 
d X *  Y* YT Y2 yo 

2 1.9018 1.4929 0.8346 -0.2291 1.9043 
3 1.3910 4.9858 1.8797 -2.9686 2.8872 
4 1.1892 7.2657 2.8835 -6.3224 3.8796 

Fixed 
point C1 
d X *  Y *  YT Y2i:IA) Y d : 3  

0.1187 1.8814 
- 1.9448 1.7723 

1.4408 2.5592 
0'9480 -1.9778 1.7473 

2.6992 3.3008 
0'9899 -1.4754 1.3286 

2 2.2676 0 0.7534 

3 7.1419 0 

4 19.90 0 

1.80, 

4 
4 

1.15- 
1 ,  I , 1 1 

4 a 12 16 20 
b 

Figure 13. YO against 6 for the case d = 2 and q = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 (from the 
bottom to the top curve, respectively). As b + 1 values are respectively 1.7627, 1.7864, 
1.8102, 1.8339, 1.8576 and 1.8813. 
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Considering now the results for exponents, universality with respect to z is found 
for all exponents. C1 and C2 are unstable with respect to f in the (-J, h,  0) space 
and to h in the (J ,  0, f )  space; the associated scale dimension is denoted Yo. Exponents 
depend on b and d and in addition Yo and YT at C2 depend on q. The thermal 
scaling dimension YT at C1 has already been described in figure 6. Figure 13 shows 
the dependence of Yo on b and q at C1 in the case d = 2. Similar curves are found 
in higher dimensions. For large b the dependence on q disappears, whereas for small 
b a marked dependence is shown. In the limit b + 1 the values of q which give the 
known results are close to one (that q = 1 gives good values has been noticed before). 
Respectively for d = 2, 3 and 4, q = 0.946, 0.916 and 0.857 gives Yo = 1.875, 2.485 
(Le Guillou and Zinn Justin 1980, see also Roskies 1981) and 3. Table 2 presents 
exponents at C1 and C2 for q = 1 and q = 0 and b = 1.1. The results at C2 are as 
different from the known results as those at C1 are. It is noted that whereas at C1 
the specific heat exponent a is bounded, a < O  (a result found on all hierarchies 
(Melrose 1983)). At C2 this is not so; with b = 1.1 for d = 3 and 4 one finds respectively 
a = 0.4042 and 0.6128 (a  is positive for all d > 2.2738). 

6. The Migdal-Kadanoff hierarchies 

Berker and Ostlund (1979) observed that the string (ABM)  decorations could be used 
to define a hierarchical lattice. The hierarchies are defined by an iterative generation. 
Starting from a single bond at each step, every bond is decorated with the chosen 
decoration. For the case A = 2, M = 2 and B = 1 the first two iterative steps are 
shown in figure 14. The family of hierarchies based on the string decorations is 
referred to below as the MKH. The iteration may be reversed by decimating all spins 

0 
Figure 14. First two steps in the generation of the hierarchy with A = 2 ,  M = 2 and B = 1. 

at the lowest level resulting in an exact renormalisation transformation. Recursion 
relations found under Migdal-Kadanoff approximations on regular lattices constitute 
exact solutions of models on the MKH. 

Many examples of hierarchies exist (Kaufman and Griffiths 1981, Melrose 1983). 
Other decimation approximations on regular lattices (Sneddon and Barber 1977, 
Reynolds et a1 1977, see also Chao 1981) can also be considered as exact on a 
hierarchy. Understanding of these lattices is in its early stages. Kaufman and Griffiths 
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(1981) have reported results including the existence of the thermodynamic limit and 
the relationships between features of the lattices and the nature of phase transitions 
thereon. The lattices lack translational invariance and are highly inhomogeneous, yet 
it is clear that they can support a wide variety of phase transitions and critical 
phenomena. However, the lattices possess unusual features not found on regular 
lattices, Kaufman and Griffiths (1982) argue that the susceptibility is infinite 
throughout the high-temperature region. Other fractal lattices on which decimation 
renormalisation groups can be found exactly (Gefen et a1 1980, Dhar 1977, Nelson 
and Fisher 1975) do not show phase transitions above zero temperature. 

In this section several features of the MKH are reported. Firstly the M and B 
coefficients enter the recursion relations in a simple fashion (cf equation (Al) in the 
case r = 1). The temperature may be rescaled in the relations such that the product 
BM is constant, leaving exponents and phase diagram topology unchanged. It is noted 
that the coefficients ( l b ) ,  (IC) and (4) all have the same product BM (due to bond 
conservation) and hence are all equivalent under temperature rescaling. Further the 
universality in z shown by the coefficients (iii) in equation (1  1)  results, because the 
product BM is independent of z.  

The hierarchical lattices are examples of fractal lattices (Mandelbrot 1977). On 
these lattices definitions of dimension lead to non-integer values. Whereas on regular 
lattices different definitions of dimension agree, on fractal lattices they usually do not. 
Several authors (Mandelbrot 1977, Dhar 1977, McKenzie 1981) have introduced 
dimension definitions. The fractal dimension, D (Mandelbrot 1977), characterises 
how the number of bonds on the lattice grows with its size. It is necessary (Kaufman 
and Griffiths 1981) to introduce a definition of length on the lattices. This is set by 
defining the scale change, 6, associated with the renormalisation (decimation) step. 
Taking each bond of length unity and following McKenzie (1981), the distance 
between two vertices is set as the number of bonds on the shortest path on the lattice 
between the vertices. On the MKH one finds b = A  and as each decoration contains 
A B M  bonds 

(23) 
It is noted that for the approximation coefficients D = d the dimension of the regular 
lattice under consideration. Following directly the definition of Dhar (1977), in 
appendix 3 it is found that this also leads to (23). Another parameter of interest is 
the connectivity, Q (Geren et a1 1980). This characterises how the number of bonds 
which need be cut to separate a finite hierarchy from a larger unit grows with its size. 
One finds (Melrose 1983) 

(24) 
D (or d )  = 1 + Q on regular lattices, as found on the MKH, but in general D > 1 + Q 
on the hierarchies (Melrose 1983). In contrast to most other fractal lattices different 
definitions of dimension agree on the MKH. 

A duality relationship between members of the MKH was discussed earlier in 
8 2. From (23) it is seen that, in general, dual MKH do not have the same dimension 
(a notable exception to this being the case M (or B) = A  and D = 2). 

The treatment of external fields on the MKH was discussed by Yeomans and Fisher 
(1981). Only the choice 4 = 1 leads to a Hamiltonian whose form is invariant under 
renormalisation (in contrast to the approximations where a range of q was available). 
The fields are assigned to the spins in proportion to their coordination on the lattice. 

D = In ABM/ln A.  

Q = In MB/ln A .  



The Migdal-Kadanof approximation-some features 1057 

This field assignment was adopted in the computation of results presented below. It 
is noted that the breakdown in universality between transitions in and out of fields is 
an exact property of the MKH. 

The MKH exhibit a complete breakdown in universality. Under the temperature 
rescaling one may set either M = 1 or B = 1 so the MKH can be parametrised by just 
two parameters and here M and A are chosen. Figure 15 shows contours of constant 
Yr and Yo found at the fixed points C1 in the (M, A )  space. (The formal difficulties 

A 

Figure 15. Contours of constant YT (full curves) and Yo (broken curves) in the (M,  A )  
space. Values of each contour given on the side of the figure. 

of interpreting these exponents on the hierarchies are noted (Kaufman and Griffiths 
1981, Dhar 1977); they are, however, the implicit exponents from which the well 
defined thermodynamic exponents may be found.) The contours of YT and Yo are 
not the same and do not follow the curves of constant D. Similar results are found 
for the thermodynamic exponents, each exponent having distinct contours. At the 
fixed points C2 the same picture emerges and, furthermore, the contours at C2 do 
not correspond with the contours of the same exponent at C1. 

7. Conclusions 

The bond-moving approximation was shown to allow a wide variation in the formation 
of string-decorated superlattices. On the hypercubic lattices an optimal approximation 
was found. This gave a maximal free energy estimate over the full coupling range. 
The present ambiguity in the literature over which approximation to use is removed 
(although this is a result of small significance as all the varieties in use give the same 
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exponents and phase diagram topology). On extending the bond-moving to all regular 
lattices it was found that, whilst on most lattices strings of length 6 are formed, on 
some lattices strings of other lengths are found. Universality is broken by the bond- 
moving. An ad hoc generalisation was undertaken by directly investigating the 
dependence of results on the string length. An approximation continuous in both 
dimension and coordination was found to show both universality and qualitatively 
correct critical couplings. Another approximation was found to give a differential 
transformation which possessed the correct duality of planar lattices. The phase 
diagram of the Ising model with external fields was examined. The ambiguity in the 
treatment of external fields was investigated directly with a free parameter q. A 
diagram in agreement with that expected was found only for the differential transforma- 
tion with q = 0. For 6 > 1 the q < 1 recursion relations were found to be pathological. 
The = 1 transformations broke an expected symmetry between transitions in and 
out of fields (notably for both ferromagnetic and antiferromagnetic transitions). Finally 
the recursion relations were discussed in the context of exact solutions on hierarchical 
lattices, the MKH. Unlike other hierarchical and fractal lattices different definitions 
of dimension agree on the MKH. Duality transformations were found to relate lattices 
of different dimension. The MKH were found to exhibit a complete breakdown in the 
concept of universality. 
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Appendix 1. Optimisation of the string decoration 

Without loss of generality the case of a model with a single coupling parameter J is 
considered. For a decoration involving r types of strings specified by coefficients 
(Mi, B i )  the recursion relations assume the form 

r 

J ' =  M ~ R A ( B ~ J )  
i = l  

(Al . l )  

(A1.2) 

where RA(x) and ka(x) are some functions which depend on the lengths of the strings 
A. (Al . l )  for r = 1 should be compared with the equivalent equation (12). 

Firstly the general problem is discussed. The free energy is found from iteration 
of (Al . l )  and summation of contributions (A1.2). One finds (Nauenberg and Nienhuis 
1974) 

(A1.3) 

where -pf is the free energy per bond, J1, J z ,  etc, are the couplings at the first, second, 
etc, iterations and P1, P2,  etc, are some vectors of variational parameters p i j  which 
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initially are allowed to vary with iteration step i. Optimisation of (A1.3) with respect 
to pij is given by 

d(-Pf) 1 aK(Ji, Pi) 1 aK(Ji+l, Pl+i) aJi+1 

dpij bid aPi j  b(i+l)d aJi+1 api, 
+- -=- 

The following solution is found: 

(A1.4) 

(A1.5) 

If (A1.5) is found for all j independent of the coupling then optimisation of the full 
series follows and, trivially, parameters will not vary with the iteration step i. 

In the case of concern here (Al . l )  and (A1.2) have the same form so proof of 
one condition of (A1.5) implies the other. Note that the derivatives of (A l . l )  have 
a similar form which it is straightforward to optimise, as below, leading to the same 
solution. The coefficients Bi and Mi are constrained by the conservation conditions 
(3a) and (3b). M1 and B1 are treated as dependent parameters and the rest are 
varied. From ( 3 a )  and ( 3 6 )  

where X and Y are constants. Now K is rewritten 
r 

K =M1(Mi)kA(Bl(hf,Bi)J) + 1 MikA(BiJ). 
i=2 

Directly one finds 

(A1.6) 

(A1.7) 

(A1.8) 

aK/aBj = JMj(-k i (B1J)  + k i (BjJ) ) ,  (A1.9) 

where KA(x)  denotes dKA(x)/dx; one also finds 

-=- aB1 ( Y -B,M1- BiMi). 
aMi M :  i = 2  

( A l . l l )  

On substitution of Bj  = B 1  for all j the above derivatives vanish. The condition (A1.5) 
is satisfied and optimisation follows. The optimal decoration is the homogeneous one 
with all strings the same. 

Appendix 2. The recursion relations 

In this appendix recursion relations are found for the Hamiltonian (17). Decimation 
of spins along a string is best carried out as product of transfer matrices, as expressed 
in equation (12). The B and A4 coefficients enter the relations in a simple fashion. 
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Site terms on the decorations may be included in the transfer matrices. However, 
the superlattice spins at the end of the strings have a different coordination from those 
on the decorations. To avoid having to deal with different matrices at the ends of the 
strings on including the site terms, a factor izM(1-q)  of the fields is added and 
subtracted at the superlattice sites. The resulting transfer matrix for a bond of a string 
is 

-1 

T =  - 1  -1 -:) (r rs (A2.1) 

where 

r = exp(BJ) 

The staggered field f alternates in sign along the strings; as a result the transfer 
matrix is transposed at every other bond along a string. The matrix product is of the 
form 

(ZT~TT~T.. . T ~ T )  (A2.2) 

where TT denotes the transposed matrix. In (A2.2) A has been assumed to be odd. 
It is desirable to continue the product for arbitrary A such that all the symmetries 
found at odd scale change (see § 5 )  are preserved. This condition is imposed by the 
tricks below. 

(i) Following Nagai and Toyonaga (1981) and Coniglio et a1 (1981), non-integer 
powers of negative eigenvalues of T are handled by the replacement 

A "  = A I A I " - ' .  (A2.3) 

s = exp[(l -4 + 2 ~ q / z ) h ]  w = exp[(l -q + 2 ~ q / z ) f ] .  

(ii) The matrix product (A2.2) is written 

(77-T)'A-1'/2 T. (A2.4) 

The first product in (A2.4) is carried out via diagonalisation of the matrix (TT'). After 
some algebra and solving for the new parameters J', h '  and f', the following relations 
are found: 

J' = &f ln(glgdg3g4) 

h ' =  ( 1 - q ) i l - i r ~ ) h  +&M 1n(gl/g2) 

f'= (1 -q) ( l  - 4 z ~ ) f + & ~  1n(g3/g4) 

gl  = rspl +r-'w-'p2 g2=r-1wp1+rs-1p2 

g3 = rsp2 + r-l w -'p3 g4 = r-'wpz + rs-lp, 

where 

and pl ,  p 2  and p 3  are the elements of (TTT)'A-1)'2: 
p1 = (sw-l  + W S - ' ) ~ A  :A-2)/2 + ( A l  -r2s2 - r -2~2)2A &A-1)/2 

p 2  = (SW- '+  ws-')(A1 -r2s2-r-2W2)(A:A-1)/2 

p 3  = ( S W - ' + W S - ' ) ~ / \ & ~ - ~ ) / ~  + ( A 1  _r2~2-r-2W2)2h:A-1)/2 
and 

A 1,2 = $ [ r 2 ( s  + sP2) + r-2( w + K2) 
* ( [ r 2 ( s 2 - ~ - 2 ) + r - 2 ( ~ 2 - ~ - 2 ) 1 2 + 4 ( ~ ~ - 1 +  ws- 1 2 1 1/2 1. 



The Migdal-Kadanoff approximation-some features 1061 

Appendix 3. Dhar’s definition of dimension 

Dhar (1977) defined the dimension of a lattice by the known properties of the 
low-temperature behaviour of the spherical model. On the hierarchies the Hamil- 
tonian of this model is written 

(A3.1) 

where the ti represent continuous spins -a <ti < 00 and the reduced coupling is taken 
as unity. On the hierarchies the spherical constraint on the spins (the second term in 
(A3.1)) is applied in proportion to their coordinations in an analogous fashion to the 
application of an external field. It is straightforward to carry out a decimation 
transformation by integration. For the case A = 2, B = 1 and arbitrary M one finds 
the new Hamiltonian 

-PH = - [M/2(A + - t i ) *  - [M(A + 2A)/(A + 1)](51+ 6;). (A3.2) 

The spins are now rescaled (in proportion to their coordinations) such that the new 
coupling is again unity. A new constraint parameter 

li 

A ’  = 2(A * +2A) (A3.3) 

is found; A = 0 is a fixed point of this relation. The renormalisation transformption 
of the free energy per bond is 

f ( h ) = ( 2 M - l )  ln[M/(4A +4)]/M+(1/2M)f(2A2+4A). (A3.4) 

Now following Dhar (1977), for small A ,  f is assumed to have the form 

f ( A  ) = f(0) +AA D’2 + terms of higher order (A3.5) 

which defines D, the dimensionality parameter. From (A3.4) and (A3.5) one finds 

D = In 2M/ln 2. (A3.6) 

This is just the result (23), the fractal dimension; in this case A = 2, B = 1. It is 
straightforward to introduce general B and A (when A is even simply iterate (A3.3); 
when A is odd it can be treated from the case A = 3). 

Note added in proof. In addition to $ 5 :  When d = 1.9031 and the fixed points merge at q = 1, the curves 
Y T ( d  and Y o ( d )  at C2 merge with discontinuous slope onto those at C1. The curvature of the critical 
surface for small Y is found as b + 1 and respectively for q = 1 and q = 0 some 100°/~ and 4% greater than 
that of the MHZ solution. 
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